先日、7月13日に二桁の掛け算の計算方法として、インド式計算をご紹介しました。
例えば、47×43=(4+1)×40×100+7×3=2021
ただし、この方法は10の位が同じ数字で、1の位同士を足して10になる場合にのみ有効です。
また、これは三桁の掛け算でも条件付きで使えることを、7月28日に紹介しました。
ただし、この方法は特定の条件下でしか使えないため、理論をしっかり理解しておくことが大切です。
要するに、計算の工夫です。
例えば、47×43の場合は、
47×43=(40+7)×(40+3)=40×40+40×(7+3)+7×3=40×(40+10)+21
これは、(x+a)×(x+b)=x²+(a+b)x+ab の展開公式に基づいています。
したがって、例えば43×48の場合、
43×48=(40+3)×(40+8)=40×40+40×(3+8)+3×8=40×(40+11)+24
つまり、40×51を計算しなければならず、暗算では難しいかもしれません。
しかし、
43×48=(40+3)×(50-2)=43×50-43×2=2150-86=2150-100+14=2064
とすることで、暗算でも計算が可能です。
計算において「正確であること」「速く計算できること」は重要なので、そのために計算の工夫をすることが大切です。